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One of our previous papers was devoted to threshold voltage in MOSFETs and MODFETs viewed as a problem of 
nonlinear dynamics. The behavior of surface carriers’ concentration under D.C. (direct current) applied voltage has been 
investigated in details. In this paper we went a step further and investigated the behavior of the same quantity under 
combined D.C. and A.C. (alternating current). As a main result emerged that it was impossible to cause small harmonic 
oscillations of surface carriers’ concentration around some equilibrium value regardless of applied D.C. voltage and thus 
imposed operating regime. 
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1. Introduction 
 
In each text-book concerning linear electronics, the 

following fact is accepted and afterwards used without 
reluctance [1, 2]. By application of D.C. voltage one 
imposes the operating conditions (the mean values of 
relevant physical quantities – currents, voltages, 
concentrations etc.). We were also taught that around 
arbitrary value of this D.C. voltage it was always possible 
to impose time dependent A.C. voltage of much smaller 
magnitude and so far cause the non-vanishing harmonic 
oscillations of other investigated quantities regardless of 
dynamical properties of exploited devices [3]. This is the 
so called static picture. The aim of the effort to be 
presented in this paper is to investigate the validity of this 
belief, i.e. to find out if dynamical properties of our 
devices can play any significant role relevant to this 
problem [1]. The standard combination of D.C. and A.C. 
voltage [2]: 
 

( ) ( ) ( )thwtVVtV mg ⋅+= cos0 ;   0VVm <<  (1) 
 
used in linear electronics has been applied to nonlinear 
dynamical models developed in the previous paper [1]. 
The results are exposed in subsequent sections. 
 
 

2. The analysis of MOSFET dynamics 
 
If the model that described MOSFET (Metal Oxide 

Semiconductor Field Effect Transistor) dynamics 
developed in [1] was supposed to be valid even if voltage 
(1) was applied, the corresponding equation could be 
written as followed [1]: 
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together with the initial condition ns(0)=k>0; λ2, β2 
denoted positive constants described in [1] and VT was the 
extrapolated threshold voltage. The equation (2) is 
recognized as Bernoulli’s differential equation and can be 
solved analytically [4]: 
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The integral in the denominator of equation (3) can’t be 
evaluated in a closed form, therefore perturbative 
expansion must be used; the first correction term will 
imply [5]: 
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what finally gives: 
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where F is: 
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The analysis of relation (5) appears to be very 

interesting:  
o if   (V0-VT)<0   the asymptotic solution    nas(t) for 
t→∞   tends to zero exponentially, i.e. ns(t) vanishes and 
no harmonic oscillations appear. 
o if   (V0-VT)>0   the influence of initial condition 
disappears and the nonvanishing asymptotic solution can 
be written as follows: 
 

 

( ) ( ) ( )
( )[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−

+−
+

−
≅

∞→ 22
0

2

0
2

2
2

0
2 sincos

1
wVV

wtwwtVV
V

VV
tn

T

T
m

T

t
s

λ

λ
λ

β
λ

 (6) 
 
This nonvanishing solution obviously has two terms: the 
first one is recognized as D.C. component already obtained 
in [1] and the second one is A.C. component that oscillates 
round the first term (it also exibits a phase shift in 
comparison to the starting A.C. voltage Vmcos wt): 
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The condition Vm<<V0 provides that ⏐δns(t)|<<ns0 and 
δns(t) can therefore be understood as a first order 
correction. The same result can be obtained without 
solving the exact differential equation, but exploiting the 
expansion method from the very beginning [5]. This 
procedure has appeared convenient for the generalization 
of the problem and understanding its solution. The 
equation (2) can be rewritten in the following form: 
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with explicitly separated stationary and perturbative terms. 
The intention is to linearize equation (8) in the vicinity of 
different fixed points ns* and in each case search for the 
first order correction δns(t): 

( ) ( )tnntn sss δ+= *                          (9) 
 
Exploiting Taylor’s expansion equation (8) turns into: 
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what, with the second order correction ((δns)2, δns⋅Vm,…) 
neglected, gives: 
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Assuming only the first order correction it has already 
been supposed that δns is proportional to Vm (which itself 
is small enough). 
 
• The analysis of the fixed point   ns*=0   (V0<VT)   
implies: 
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and the equation (10b), together with its solution, reads: 
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Obviously, the allowed D.C. voltage causes that the first 
order correction is limited to the vanishing solution, i.e. no 
harmonic oscillation is possible. 
• The situation near the fixed point 
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equation (10b) then becomes: 
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the solution of this first order inhomogeneous equation can 
be immediately written: 
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As an asymptotic solution survives only the second term; 
it exibits a harmonic oscillation of shifted phase whose 
amplitude is: 
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The expectation that the correction was proportional 

to Vm has also been confirmed. The essence of the 
conclusion of our analysis was not surprising; the fixed 
point ns*=0 allows no harmonic oscillations (device is 

off), while another fixed point 
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allows them (device is on). 
 
 

3. The Analysis of HEMT Dynamics 
 
As suggested in [1], the dynamical equation in the 

case of HEMT (High Electron Mobility Transistor) 
subjected to voltage (1) becomes: 
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with dimensionless parameters: 
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The Abellian differential equation (15) has no solution 
in the closed term, so it is necessary to start immediately 
with the Taylor’s expansion [4]: 
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or: 
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The linearization of the equation (16) around arbitrary 
fixed point, together with the cut-off of higher order 
correction terms, gives: 
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Proceeding in the same way as in the case of 
MOSFET, we analyze equation (17) for different fixed 
points [1]: 
 
• Subthreshold region:   X0<0,   ns*=0 
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what gives: 
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According to our expectations only vanishing solution 
appears, i.e. no oscillations are produced again (the device 
is off). 
 
• Above threshold region:   0<X0<1,   ns*=ns0X0 
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what turns equation (17) into [1]: 
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This equation (19a) is not as simple as equation (18a), 
but simple enough to be solved analytically: 
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For the allowed values of parameter X0 the first term 

vanishes and the only one that survives as a stationary 
solution is a second one. It straightforward leads to the 

conclusion that in this region it’s possible to produce 
harmonic oscillations of the surface carriers’ concentration 
around some arbitrary chosen fixed point: 
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• Saturation region: X0>1,   ns*=ns0 
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In this region the equation (17) can be rewritten as 

follows [1]: 
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together with its straightforward solution: 
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In the allowed range of parameter X0, the only existing 

solution is the vanishing one. According to our modest 
opinion that seems surprising (one cannot say the device is 
off, we rather say it is saturated - therefore we find it 
unexpected). 
 
 

4. Generalization 
 
The question that naturally arises is why in some 

operating regimes (i.e. for specific D.C. gate voltages) it 
appears impossible to impose harmonic oscillations of 
much smaller amplitude, while in the other ones it 
becomes possible. The proper answer to this question 
demands more detailed analysis. Starting from the 
equation (10b), one inevitably notices the following fact: if 
the specified fixed point ns* has a property that f(ns*) and 
g(ns*) are zero simultaneously, than it’s impossible to 
cause small magnitude harmonic oscillations (because 
f(ns*)=0 by itself if ns* is a fixed point, the condition 
reduces to g(ns*)=0); on the contrary, when g(ns*)≠0 
(f(ns*)=0) these small oscillations happen. Up to this 
moment only the first order correction in Vm (Xm) is 
considered. In order to investigate if upper conclusions 
hold even for higher order corrections we use perturbation 
technique to investigate our equation of interest in its most 
general form [5]: 
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The excess surface concentration δns(t) has been expanded 
in terms of dimensionless small parameter Xm deeply 
connected with applied A.C. gate voltage [5]: 
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The index p starts with p=1 because f(ns*) equals zero 
(the crucial property of fixed points). The incorporation of 
(22) into equation (1) gives: 
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The next step is to form a chain of first order 
differential equations with respect to δnsp(t) by making 
equal the left-side and right-side equation’s terms 
multiplying Xm

p for each integer p separately. It turned out 
very difficult (und inconvenient also) to develop the 
general expression for an arbitrary integer p. Instead of 
that, several starting equations of this chain are written: 
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p=3:  
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etc. 

The previous set of equations (24) enables us to 
assume the general shape of these equations for an 
arbitrary integer p (this is so obvious and doesn’t need any 
further argumentation): 
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with an important feature f‘(ns*)<0. This equation has a 
solution in a closed form: 
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with Cp being an integration constant to be determined 
from initial conditions. The fact f‘(ns*)<0 implies that after 
a long period of time, the term containing Cp vanishes, so 
the only term that survives as an asymptotic solution is the 
second one. Therefore, in each power of perturbative 
series the nonvanishing A.C. component may appear, if 
only the inhomogeneous part of equation (25) is nonzero.  

The several starting equations of this perturbative 
expansion, together with their analytical solutions, are 
listed bellow: 
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3. up to Xm

3: 
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These solutions (27b), (28b) and (29b) are inserted 
into relation (22) in order to achieve the exact expression 
for δns(t) as far as possible. Higher order perturbative 
terms (p≥2) are undesirable because they introduce higher 
order harmonics and the signal amplification that depends 
on the signal magnitude itself. Only the first order 
perturbative nonzero term is convenient because it 
provides amplification independent of the signal itself and 
retains only first harmonic with phase shift only (27b). If 
only the first order term in perturbative power series is 
considered, the general picture reduces to the already 
mentioned condition for the appearance of harmonic 
oscillations: g(ns*)≠0; otherwise, the harmonic oscillations 
are absent. 

 
 
5. Discussion and conclusions 
 
So much attention has been paid to the behavior of 

surface carriers’ concentration because it appears as a 
crucial physical quantity that governs lateral electron 
transport in unipolar devices. This lateral transport is 
caused by an applied D.C. drain-source voltage and time-
dependent drain current can be written in the following 
form [2]: 
 

( ) ( )
dx
dVnneWti ssD ⋅+⋅= δμ *               (30) 

 
where μ denotes the carriers’ mobility in the channel, W 
the width of the channel and V(x) is the quasi-Fermi 
potential for electrons. 
 
The standard procedure in unipolar structures is to 
integrate the expression (30) along the channel [6]: 
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The purpose of this section is not to examine the 
relation (31) in details, but to roughly describe the 
mechanism of producing alternating drain current 
component δiD(t). Obviously, the variation of surface 
carriers’ concentration δns(t) causes the appearance of 
drain current δiD(t) proportional to δns(t). It finally means 
that δiD(t) will also be a harmonic (sine or cosine) function 
of time (probably with a phase shift included). 
Furthermore, one could extract transconductance gm 
(presumably defined as òiD/òVg) and all other small signal 
parameters relevant for electronics [2]. 

The paper has inevitably shown how the incorporation 
of dynamical treatment of relevant variables could affect 
the whole situation and lead to some (un)expected 
conclusions. The main feature of this influence is confined 
in the statement, together with a plenty of proof, that in 
some regions of operation it’s possible to transfer small 



Surface carriers’ concentration dynamics caused by a small alternating applied voltage                        3435 
 

A.C. signal from gate to drain terminal and in other 
regions of operation it becomes impossible. 
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